RBF-based neurodynamic nearest neighbor classification in real pattern space

نویسندگان

  • Mehmet Kerem Müezzinoglu
  • Jacek M. Zurada
چکیده

Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It is shown in this paper that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multi-layer perceptron sub-networks, is capable of maximizing such an energy form locally, thus performing almost perfectly nearest neighbor classification, when initiated by a distorted pattern. The proposed design scheme allows for explicit representation of prototype patterns as network parameters, as well as augmenting additional or forgetting existing memory patterns. The dynamical classification scheme implemented by the network eliminates all comparisons, which are the vital steps of the conventional nearest neighbor classification process. The performance of the proposed network model is demonstrated on binary and gray-scale image reconstruction applications. 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of Recurrent RBF Network in Nearest Neighbor Classification

Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It has been shown in [1] that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multi-layer perceptron subnetworks, is c...

متن کامل

Learning Dissimilarities for Categorical Symbols

In this paper we learn a dissimilarity measure for categorical data, for effective classification of the data points. Each categorical feature (with values taken from a finite set of symbols) is mapped onto a continuous feature whose values are real numbers. Guided by the classification error based on a nearest neighbor based technique, we repeatedly update the assignment of categorical symbols...

متن کامل

Fast k-NN classification rule using metric on space-filling curves

A fast nearest neighbor algorithm for pattern classiication is proposed and tested on real data. The patterns (points in d-dimensional Euclidean space) are sorted along a space-lling curve. This way the multidi-mensional problem is compressed to the simplest case of the nearest neighbor search in one dimension.

متن کامل

Improving nearest neighbor classification with cam weighted distance

Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...

متن کامل

Multi-hypothesis nearest-neighbor classifier based on class-conditional weighted distance metric

The performance of nearest-neighbor (NN) classifiers is known to be very sensitive to the distance metric used in classifying a query pattern, especially in scarce-prototype cases. In this paper, a classconditional weighted (CCW) distance metric related to both the class labels of the prototypes and the query patterns is proposed. Compared with the existing distance metrics, the proposed metric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006